with open(r'day8/input.txt', 'r') as input: lines = list(map(lambda x: list(map(lambda y: int(y),x.split(','))),input.read().split('\n')[:-1])) def dist(a,b): return (a[0]-b[0])**2 + (a[1]-b[1])**2 + (a[2]-b[2])**2 excluded_neigbors = [set([i]) for i in range(len(lines))] def find_best(i): best_distances[i] = [10**15,-1] for j,node2 in enumerate(lines): if j in excluded_neigbors[i]: continue distance = dist(lines[i],node2) best_distances[i] = min([distance,j], best_distances[i],key=lambda x : x[0]) best_distances = [] idx_circuit = list(range(len(lines))) for i in range(len(lines)): best_distances.append(0) find_best(i) size = 10**3-1 min_idx = 0 ass_idx = 0 while size > 0: min_idx = best_distances.index(min(best_distances, key = lambda x:x[0])) if (old_idx := idx_circuit[min_idx]) != (new_idx := idx_circuit[(ass_idx := best_distances[min_idx][1])]): for i in range(len(lines)): if idx_circuit[i] == old_idx: idx_circuit[i] = new_idx size -= 1 excluded_neigbors[min_idx].add(ass_idx) excluded_neigbors[ass_idx].add(min_idx) find_best(min_idx) find_best(ass_idx) print("score:",lines[min_idx][0]*lines[ass_idx][0])