42 lines
1.2 KiB
Python
42 lines
1.2 KiB
Python
with open(r'day8/input.txt', 'r') as input:
|
|
lines = list(map(lambda x: list(map(lambda y: int(y),x.split(','))),input.read().split('\n')[:-1]))
|
|
|
|
def dist(a,b):
|
|
return (a[0]-b[0])**2 + (a[1]-b[1])**2 + (a[2]-b[2])**2
|
|
|
|
excluded_neigbors = [set([i]) for i in range(len(lines))]
|
|
|
|
def find_best(i):
|
|
best_distances[i] = [10**15,-1]
|
|
for j,node2 in enumerate(lines):
|
|
if j in excluded_neigbors[i]: continue
|
|
distance = dist(lines[i],node2)
|
|
best_distances[i] = min([distance,j], best_distances[i],key=lambda x : x[0])
|
|
|
|
best_distances = []
|
|
|
|
idx_circuit = list(range(len(lines)))
|
|
|
|
for i in range(len(lines)):
|
|
best_distances.append(0)
|
|
find_best(i)
|
|
|
|
size = 10**3-1
|
|
|
|
min_idx = 0
|
|
ass_idx = 0
|
|
|
|
while size > 0:
|
|
min_idx = best_distances.index(min(best_distances, key = lambda x:x[0]))
|
|
if (old_idx := idx_circuit[min_idx]) != (new_idx := idx_circuit[(ass_idx := best_distances[min_idx][1])]):
|
|
for i in range(len(lines)):
|
|
if idx_circuit[i] == old_idx:
|
|
idx_circuit[i] = new_idx
|
|
size -= 1
|
|
excluded_neigbors[min_idx].add(ass_idx)
|
|
excluded_neigbors[ass_idx].add(min_idx)
|
|
find_best(min_idx)
|
|
find_best(ass_idx)
|
|
|
|
|
|
print("score:",lines[min_idx][0]*lines[ass_idx][0])
|